Phytochemical and pharmacological potential of *Hygrophila spinosa* T. anders

**Abstract**

*Hygrophila spinosa* T. Anders (Acanthaceae) is described in Ayurvedic literature as Ikshura, Ikshugandha and Kokilasha "having eyes like Kokila or Indian cuckoo", common in moist places on the banks of tanks, ditches, paddy fields etc., widely distributed throughout India from Himalayas to Ceylon, Sri Lanka, Burma, Malaysia and Nepal. Seeds, whole plant, leaves, roots and ash of the plant are predominantly used for the treatment of various ailments. The compounds identified in *H. spinosa* are mainly phytosterols, fatty acids, minerals, polyphenols, proanthocyanins, mucilage, alkaloids, enzymes, amino acids, carbohydrates, hydrocarbons, flavonoids, terpenoids, vitamins and glycosides. Some of the reported phytoconstituents are lupeol, lupenone, 25-oxo-hentriacontanyl acetate, stigmasterol, betulin, proanthocyanins, mucilage, alkaloids, enzymes, amino acids, carbohydrates, hydrocarbons, flavonoids, terpenoids, vitamins and glycosides.

**Keywords:** Acanthaceae, Anticancer, Flavonoids, *Hygrophila spinosa*, Phytosterols
Medicinal and aromatic plants constitute a major segment of the flora, which provides raw materials for use in the pharmaceuticals, cosmetics, and drug industries. The indigenous systems of medicines, developed in India for centuries, make use of many medicinal herbs. In one of the studies of the World Health Organization, it is estimated that 80 per cent of the population of developing countries relies on traditional plant based medicines for their health requirements [11,12,13]. Even in many of the modern medicines, the basic composition is derived from medicinal plants and has become acceptable for many reasons that include easy availability, least side effects, low prices, environmental friendliness and lasting curative property. The World Health Organization (WHO) has defined traditional medicine as “the sum total of all the knowledge and practices, whether explicable or not, used in diagnosis, prevention and elimination of physical, mental or social imbalance and relying exclusively on practical experience and observation handed down from generation to generation, whether verbally or in writing” [11]. All traditional medicines have their roots in folk medicines and household remedies. WHO has listed 20,000 medicinal plants used in different parts of the world. Other estimates indicate the number to range between 35,000 and 70,000 worldwide [13,14]. Plant derived products are present in 14 of the 15 therapeutic categories of pharmaceutical preparations, which are currently recommended to medical practitioners in U. K. and they form an important part of health care system in the western world [21]. There are several factors for the continued popularity of traditional drugs and one is their ready availability as compared to the modern medicines besides the adverse effects of synthetic drugs [22].

Plants can, therefore, be described as the major source of medicine, not only as isolated active principles to be dispensed in standardized dosage forms but also as crude drugs for the population of developing countries, World Health Organization (WHO) has stressed the need to promote the indigenous systems of medicine among the rural population of the Third World Countries [23]. This has led to an awareness of alternative systems of medicine, still practiced and found satisfactory by three-quarters of the world’s population. On the other hand, the revival interest in herbal medicine as a system of natural cure has emerged as a new trend in the west.

Many drugs of modern medicine have had their origin in traditional medicine. Some common examples include the discovery of the alkaloid diosgenin in Dioscorea deltoides as source for the partial synthesis of cortisone and steroid hormones in the forties, the discovery of the hypotensive alkaloid reserpine in Rauwolfia serpentina and the analgesic alkaloid aspirin in Filipendula ulmaria in the fifties, the discovery of anti-asthmatic alkaloid ephedrine in Ephedra sinica and the anticancer alkaloid podophyllotoxin in Pedophyllum hexandrum in the sixties, etc.

The genus Hygrophila is an angiosperm plant belonging to the family Acanthaceae. The family comprises a number of genera and species having medicinal value and are usually perennial herbs or shrubs, rarely trees; some are lianes, xerophytes, aquatica, or mesophytes. From related families, the plants of Acanthaceae are distinguished by a number of characters, notably the presence of cystolith in vegetative organs, the presence and development of floral bracts and bracteoles, usually bilabiate corollas associated with the bilocular ovary, generally bivalvate elastically dehiscing capsules, and usually by the curved retinacula supporting the seeds. The anthers and stamens provide many diagnostic characters of the genera. Some species of Hygrophila are: H. salicifolia, H. phnomoides, H. quadrivalvis/Nees, H. serphyllum T. Anders, H. spinosa T. Anders, H. obovata, H. ringens, H. polysperma (Roxb.) T. Anders, H. dillomis, H. erecta, H. megalanthera, H. pogonocalyx, H. balsamica, etc. [15,16,17,18,19].

Hygrophila spinosa T. Anders contains various groups of phytoconstituents viz. phytosterols, fatty acids, minerals, polyphenols, proanthocyanidins, mucilage, alkaloids, amino acids, carbohydrates, flavonoids, terpenoids, vitamins, glycosides etc and is useful in the treatment of anasarca, diseases of urinogenital tract, dropsy of chronic Bright’s disease, hyperdipsia, vesical calculi, flatulence, diarrhea, dysentery, leucorrhoea, gonorrhoea, asthma, blood diseases, gastric diseases, painful micturition, menorrhagia etc [12,13,14,17,18].

Description of Hygrophila spinosa

Hygrophila spinosa (Acanthaceae) is described in Ayurvedic literature as Ikshura, Ishagundha and Kokilasha "having eyes like Kokila or Indian cuckoo", common in moist places on the banks of tanks, ditches, paddy fields etc., widely distributed throughout India from Himalayas to Ceylon, Sri Lanka, Burma, Malaysia and Nepal [15,16,17,20,21,22]. It is a stout herb with numerous fasciculate usually unbranched subquadrangular erect stems, 0.6-1.5 m high, thickened at the nodes, more or less hispid with long hairs, especially below each node. Leaves sparingly hispid on both sides, tapering at the base, sessile, in verticels of 6 at a node, the 2 outer leaves of the whorl larger, reaching 18 by 1.3-3.2 cm, oblong-erect stems, 0.6-1.5 m high, thickened at the nodes, more or less hispid with long hairs, especially below each node. Leaves sparsely hispid on both sides, tapering at the base, sessile, in verticels of 6 at a node, the 2 outer leaves of the whorl larger, reaching 18 by 1.3-3.2 cm, oblong-lanceolate or oblongate, the 4 inner leaves (two on each side) reaching about 3.8 cm long, each of the 6 leaves with nearly straight sharp yellow spine, 2.5-4.5 cm long, in its axil. Flowers in whorl of 8 (in 4 pairs) at each node; bracts about 2.5 cm long, like the leaves, lanceolate, hairy and ciliate; bracteoles 2 cm long, linear-lanceolate, with hyaline margin in the lower part, hairy and ciliate with long white hairs. Calyx 4 parted; upper sepal 1.6-2 cm long, broader than the other 3, which are 1.3 cm long, all linear lanceolate, coarsely hairy on the back, and with hyaline ciliate margins. Corolla purple-blue, reaching 3.2 cm long, widely zipped; tube 1.6 cm long, abruptly swollen at the top; lips subequal, 1.6 cm long, the upper lip 2-fid with oblong truncate lobes, the lower lip with 2 entire crest like longitudinal folds or callosities on the palate, deeply 3-lobed, the lobes oblong or slightly obvate, rounded or truncate. Filaments quite glabrous, one short and one long filament of each pair united at the base. Style slightly pubescent, filiform. Capsules 8 mm long, linear-oblong, pointed, 4-8 seeded, ovate-quadrate, black, compressed, hygroscopically hairy and 0.3 x 0.2 cm [Figure 1] [15,17,22,23,24,25,26,27]. The various common names/vernacular names of the plant are Kakilakshya, Ishagundha, Ikshura, Kokilaksha, Kokilanayana, Kshura, Kshuraka, Lakrehi, Ikki, Tal-makhan, Talikamahana, Gokulakanta, Gokura, Talikamahana, Kulikaraka_Kollekha, Koliaka, Kolista, Talimkahana, Kolsunda, Talimkhanah, Kulikahana, Kantakalkila, Nirmali, Vayatchuli, Nirmuli, Neremulli, Nirumalli, Ketta, Nirugubbi, Nerugobbi, Nirugubbi, Kokilaksamu, Kantakalkila, Kalavarkakila, Eystor, Esharo, Dayingwa, Kolavakke, Kolavali, Kolardin, Soopadan, Long-leaved barleria etc [15,16,17,19,20,21,22,23,25,26,27,28,29,30]. The botanical classification of the plant is:

Kingdom Plantae-Plants
Subkingdom Tracheobionta-Vascular plants
Superdivision Spermatophyta-Seed plants
Division Magnoliophyta-Flowering plants
Class Magnoliopsida-Dicotyledons
Subclass Asterae
Order Scrophulariales
Family Acanthaceae-Acanthus family
The various Ayurvedic properties of the drug are: RasaMadhura, Amla, Tikta; Guna- Pichchhila, Snigdha; Veeyaa,Shreeta; Vipaka-Madhura; Dosahagna-Vatipitamahana; Rogaghna-Nadasa, Yatara, Vatavyadi, Kanala, Jadoda, Yakruddara, Anaha, Udara, Pittam, Shotha, Kasa, Shukrasrutila, Kalyana, Malaakshini, Ashrani, Bishithotha, Daubarya; Karma- Nadabala, Santara, Yaksidas, Ruchya, Anulomana, Shothahara, Stanayanan, Mostral, Virshya, Vajikara, Shukrasrutila, Balya, Brinahana[17]. Its uses in Ayurveda and Siddha are: Muthuramaarasa; diuretic, aphrodisiac, pandu, dropsy, scanty urine, ascolites; seeds are preemham and athisasam[18,20]. In Unani system of medicine it is Hot 1°. Dry 1°; seeds are aphrodisiac, nutritive; leaves are diuretic, externally for lumbago and rheumatism[19]. It is a source of the Ayurvedic drug 'Kokilaasha'[21], Unani drug 'Talakana'[22] and Siddha drug 'Neevril' that are claimed to have anabolic-androgenic activity[23]. The plant is used as antimonial[24], hypoglycemic[25] antibacteria[26,27], hepatoprotective[28], low molecular against Bulinus truncatus[29], demulcent, aphrodisiac and diuretic. The aerial part and root are used in herbal preparations[30,31]. The dose of the plant used in powder form is 3 to 6 gm[32,33] and various parts of the plant are used the whole plant, seeds, roots, leaves and ashes of the plant[34,35,36]. Different morphological parts of the plant used traditionally for the treatment of various ailments are listed below[37,38].

### Ethnomedicine

The various Ayurvedic properties of the drug are: RasaMadhura, Amla, Tikta; Guna- Pichchhila, Snigdha; Veeyaa,Shreeta; Vipaka-Madhura; Dosahagna-Vatipitamahana; Rogaghna-Nadasa, Yatara, Vatavyadi, Kanala, Jadoda, Yakruddara, Anaha, Udara, Pittam, Shotha, Kasa, Shukrasrutila, Kalyana, Malaakshini, Ashrani, Bishithotha, Daubarya; Karma- Nadabala, Santara, Yaksidas, Ruchya, Anulomana, Shothahara, Stanayanan, Mostral, Virshya, Vajikara, Shukrasrutila, Balya, Brinahana[17]. Its uses in Ayurveda and Siddha are: Muthuramaarasa; diuretic, aphrodisiac, pandu, dropsy, scanty urine, ascolites; seeds are preemham and athisasam[18,20]. In Unani system of medicine it is Hot 1°. Dry 1°; seeds are aphrodisiac, nutritive; leaves are diuretic, externally for lumbago and rheumatism[19]. It is a source of the Ayurvedic drug 'Kokilaasha'[21], Unani drug 'Talakana'[22] and Siddha drug 'Neevril' that are claimed to have anabolic-androgenic activity[23]. The plant is used as antimonial[24], hypoglycemic[25] antibacteria[26,27], hepatoprotective[28], low molecular against Bulinus truncatus[29], demulcent, aphrodisiac and diuretic. The aerial part and root are used in herbal preparations[30,31]. The dose of the plant used in powder form is 3 to 6 gm[32,33] and various parts of the plant are used the whole plant, seeds, roots, leaves and ashes of the plant[34,35,36]. Different morphological parts of the plant used traditionally for the treatment of various ailments are listed below[37,38].

### Chemical Constituents

Root of the plant contains essential oils[17],[39,40], alkaloids[41], waxy substances, gum[42], minerals as Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr[43] and phytosterols[44]; alkaloids and sterols are present in the aerial parts[45]. Seeds contain mucilage, potassium salts, diastase, lipase, protease,[18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] sterols[22,23,24,25,26,27,28,29,30,31,32,33,34,35,36], alkaloids, fixed oils[36], fatty acids[36] and minerals like Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr[46]; Whole plant contains essential oil[47], a straight chain ketone[48] and alkaloids[49]. Leaf contains proteins, nitrogen, polyphenols[50], minerals as Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr[51]; glycosides, reducing sugars[52], acacetin, procyanidin, phenolic acid[53], hydrocarbons[19,25,26,27], minerals as Ca, Mg, K, Fe, Cu, Zn, Mn, Co & Cr[54], alkaloids, mucilage, potassium salts, sugars, purines alkaloid[19,55], flavonoids, terpenoids[56], manganese salts, potassium chloride & sulphate, fixed oils[57] are reported in the plant without any specification of the morphological part of the plant and ash from the root contains potassium salts[58]. Some of the phytoconstituents of the plant are summarized in [Table 1].

### Pharmacological Studies

Hussein Ayoub et al.[59] studied the anticancer activity of ethanolic extract of the fruits of Asteracantha longifolia (L) Nees using the KB test system and the ED 50 found was more than 1 μg/ml in the KB cell culture. Further the antitumor activity in Ehrlich ascites carcinoma and sarcoma-180 bearing mice of the petroleum ether extract of the roots of Hygrophila spinosa. T. Anders was also studied[60]. The extract showed decrease in packed cell volume, increases life span of EAC/S-180 bearing mice in a day dependent manner and also inhibited the rapid increase of weight of tumor bearing mouse. Sub-acute toxicity study of the hydroalcoholic extract of the whole plant of H. spinosa showed no significant change in body weight, organ weight (heart, kidney, liver, lung and spleen) and serum biochemical parameters. The LD 50 was found to be 3020 mg/kg body weight. The tumor reducing potency of the extract (300 mg/kg body weight) in DMDA (7, 12-Dimethylbenz (a) anthracene) induced mammary tumor in female rats was assessed by recording the reduction in tumor weight[61].

Chloroform extract of the whole plant of A. longifolia (L) Nees is active against Bacillus subtilis[62], NCTC 8236, Staphylococcus aureus NCTC 6447, Pseudomonas aeruginosa[63], NCTC 6750 and Escherichia coli NCTC 8196; methanol extract is active against B. subtilis and S. aureus, but aqueous extract is not active against the above four strains[64].

Petroleum ether extract of the roots of H. spinosa has no sedative-hypnotic action, but when administered i.p. to mice, significantly potentiated the sleeping time of chlorpromazine, diazepam, pentobarbitone, chloridiazepoxide and protected against strychnineinduced convulsions[65].

Ethanolic extract and its chloroform fraction of the aerial parts of Asteracantha longifolia (L) Nees shows promising hepatoprotective activity, but the aqueous extract and methanol fraction of the ethanolic extract were inactive[66]. The ethanolic extract and its chloroform fraction significantly reduced different enzyme levels like serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase and serum bilirubin in carbon tetrachloride induced hepatotoxicity in rats; also reduced the morphological parameters in liver (liver weight and liver volume). Further Sen et al.[67] reported that the leaf extract (3 teaspoon, twice daily for 7 days) of H. auriculata (K. Schum) Heine (Acanthaceae) commonly known as ‘Kuilekha’ is used for treatment of jaundice by the local people at Bargarh district, Orissa, India. The methanolic extract of H. auriculata also protects the liver against paracetamol and thioacetamide intoxication in rats[68]. The acute toxicity of the aqueous extract of the roots of H. auriculata was evaluated by administering the extract orally to different groups at the dose level of 250, 500, 1000 and 2000 mg/kg body weight. All animals were observed for toxic symptoms and mortality for 72 hrs. No mortality was observed up to a dose level of 2000 mg/kg body weight. As per the ranking system European Economic Community (EEC) for acute oral toxicity, the LD 50 dose of 2000 mg/kg and above is categorized as unclassified (EC Directive 83/467/EEC, 1983). The extract has significant hepatoprotective and antioxidant activities in CCl4 induced liver toxicity in rats. The extract significantly decreased the alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase and total bilirubin in the treated groups as compared to the control. The in vitro antioxidant activity was studied using ferric thiocyanate (FTC) and thiobarbituric acid method[69]. Again Usha et al.[70] have reported the hepatoprotective activity of the aqueous extract of the roots of H. spinosa at a dose of 200 mg/kg body weight, orally in CCl4 induced liver damage in rats. They analysed the levels of some known antioxidant (both enzymic and non enzymic) activities and histopathological studies to find out the hepatoprotective activity.
Petroleum ether extract of the roots of \( \text{H. spinosa} \) at 100 and 200 mg/kg body weight orally increases the haemoglobin, haematocrit, RBC, and total WBC compared with vehicle treated control rats. In anemic rats, the extract increases haemoglobin, haematocrit, and RBC count, but decreases serum iron and total iron binding capacity as compared with vehicle treated anemic control rats. Pawar et al. reported the LD₅₀ and haemato poetic activity of the petroleum ether extract of the leaves of \( \text{A. longifolia} \) in rats. For LD₅₀ study the extract was administered i.p., in doses of 250, 500, 750, 1000, 1250, 1500 mg/kg of body weight in different groups of animals. The LD₅₀ studies revealed that albino rats tolerated a considerable high dose of the extract (1000 mg/kg body weight, i.p.), without any manifestations. Haematological parameters were evaluated in the anemic animal model and it was found that the extract significantly increases the haematological parameters (erythrocyte count, leucocyte count, haemoglobin and haematocrit value).

Indigenous drug (Speman) of Himalaya Drug Company in which \( \text{H. spinosa} \) is an ingredient increases the malleate activity of dorsolateral prostate, fructose content of seminal vesicles along with coagulating glands, which confirms its anabolic-cum-androgenic like activity. One formulation of \( \text{H. spinosa} \) alone and also in combination with other two herbomineral formulations showed beneficial effects of various degrees in alcohol-exposed and normal rats with respect to the sexual behaviour of animals. There was also improvement in the number of LH-FSH-producing basophil cells in the pituitary and raised level of circulating testosterone. The mean sperm count was also higher in the drug treated animals.

Treatment of diabetic rats with the hydroalcoholic extract of the aerial parts of \( \text{O. auriculata} \) (100 and 300 mg/kg body weight) for three weeks showed reduction in blood glucose, thiobarbituric acid reactive substances (TBARS) and hydroperoxide in both liver and kidney. The extract increased the glutathione (GSH), glutathione peroxidase (GPX), glutathione s-transferase (GST) and catalase in the treated groups. Treatment with the extract also reduced lipid peroxidation that is associated with increased activity of superoxide dismutase (SOD) and catalase. Hence the extract possesses antioxidant and anti diabetic activities. Further the antioxidant property of the plant was also reported. Administration of an aqueous extract of \( \text{H. longifolia} \) to glucose loading resulted in a significant increase in the glycogen content of liver and muscle, and a significant increase in triacylglycerol content of adipose tissue in comparison with control rats. However, the plant extract had no effect on the glucoseoncogenic absorption. It has been suggested to exert hypoglycemic action by mechanisms similar to those of sulphonylureas.

Decoction of the whole plant and aqueous extract of ashes of \( \text{H. spinosa} \) showed diuretic action in rats, which was attributed to presence of potassium salts in high concentration. Diuretic activity of \( \text{A. longifolia} \) attributed to lupeol. Lupeol also controls arthritis and acts as chemo preventive and immunomodulatory. Lupeol and b-sitosterol are having antipyretic, hepatoprotective, antioxidant, anticaner and macrofilaricidal activities.

The cholesterol soluble alkaloidal fraction from the aerial parts of \( \text{A. longifolia} \) relaxes smooth muscles, lowers blood pressure of anaesthetized dog, possibly by vasodilation, stimulates respiration and has diuretic action on rabbits. Also the essential oil from the roots and aerial parts of the plant showed antibacterial activity against Gram-positive and Gram-negative organisms. Administration of aqueous extract of whole plant causes a continuous rise of blood pressure of anaesthetized cat and restores failing heart to normal in perfusion of frog's heart.

The plant is having anti-convulvent, antineoplastic, hepatoprotective, antifungal, antispasmodic, antiinflammatory, diuretic, moderate antipyretic, hypotensive, vasodilatory, anabolic cum androgen like activity, bronchodilatory, antitumor promoting activity against chemically induced hepatocarcinogenesis in wistar rats. Administration of Koklassha (\( \text{A. longifolia} \)), 8-10 gm (in divide doses) orally with milk or sugar for 3 months to fifty infertile couples with males suffering from oligospermia, necrospermia, less motile and unhealthy sperms showed appreciable change in viability after one month of treatment, including some change in morphological character of the sperm. In the 2nd month the semen analysis showed considerable improvement in number and motility and immaturity reduced. After three months of treatment normospermia developed in 80% of patients.

Methanolic extract of the seeds of \( \text{H. auriculata} \) showed potent inhibitory action against leukotriene B₄ biosynthesis in isolated bovine polymorphonuclear leukocytes. Ethanol and distilled water extract of the plant exhibited significant anti-inflammatory activity, whereas significant analgesic activity was shown by petrol ether and ethyl alcohol extract, when compared with respective controls and were comparable with those of standard drugs diclofenac sodium and analgin in albino rats and mice at a dose of 400 mg/kg body weight, orally.

The crude petroleum ether extract of \( \text{H. spinosa} \) was found to possess low toxicity (LD₅₀ 1gm/kg in mice) and effectively arrested neoplastic growth in swiss mice. The associated pathologic changes in blood cell counts and haemoglobin content due to oncogenesis in the host returned to almost normal by drug treatment. Treatment of the test animals with the drug, previously inoculated with 3 different strains of tumour cells in mice, resulted in the inhibition of tumour growth in all three cases. The drug significantly increased the life span in Daton's lymphoma treated mice. The plant is also used for the treatment of urticaria and one homeopathic medicine of the plant administered @ 3X twice a day cured a patient suffering from Hairy Cell Leukemia. The recovery was rapid and count stabilized; also there was relief from headache, red nodular urticarial eruption and insomnia.

The antifungal activity of \( \text{H. auriculata} \) extract against Aspergillus tamari, Rhizopus solani, Mucor mucospora and Aspergillus niger is due to the proteins and peptides present. The methanolic extract at 30 µg/ml dose is effective against Enterobacter aerogenes, Staphylococcus aureus and Burkholderia pseudomallei. The aqueous and ethanolic extract of the whole plant of \( \text{A. longifolia} \) shows hepatoprotective activity against galactosamine induced liver dysfunction in rats. The activity was assessed by examination of blood biochemistry and histopathological studies of liver. Also the methanolic extract of the plant is an effective inhibitor of oxidative stress and oxidant induced post necrotic proliferation in rat liver.
H. spinosa is widely distributed throughout India and is used for the treatment of cancer, arthritis, hepatotoxicity, inflammation, blood diseases, diabetes, fever, constipation, bacterial infection etc. The plant is also used as antioxidant, diuretic, hypotensive and macrofilaricidal, but the mode of action of different bioactivities are not studied in detail. H. spinosa contains various phytoconstituents viz. alkaloids, glycosides, steroids, flavonoids, terpenoids, mucilage etc. which may be responsible for the different pharmacological activities. Hence, we can isolate some pure phytopharmaceuticals which in turn can be used as lead molecules for synthesizing novel agents having good therapeutic activity.

With regard to the development of quality herbal medicine the standardization of extracts, phytopharmacology of different extracts, isolation and characterization of active phytopharmaceuticals, elucidation of mechanism of action of the isolated compounds and clinical trial of the compounds are much needed. In the changing global scenario the interest towards plants with medicinal value is increasing substantially in the primary healthcare system both in the developed and developing countries. Therefore, the informations will help the scientists and researchers to screen the compounds responsible for different bioactivities, and to elucidate the molecular mechanism of action.

References

40. The Wealth of India, (Publication & Information Directorate, CSIR, New Delhi, 1948) 133.  
45. The Wealth of India, (CSIR, New Delhi, 1969) 162.  
47. The Useful Plants of India, (CSIR, Aruna Printing Press, New Delhi, 1988) 60.  
This article has been cited by


Hygrophila spinosa T. Anders.; Hygrophila auriculata [K. Schum.] Heine) (known as Kokilaksa in Sanskrit and Talmakhana in Hindi, family-Acanthaceae) is a common weed growing in marshy and water logged areas. Lupeol is also a potential phytochemical in controlling arthritis (Geetha and Varalakshmi, 1999). It also acts as chemo preventive and immunomodulatory (Anton et al., 1993). β-sitosterol has therapeutic action in female reproductive disorders (Ryokkynen et al., 2005). Since different parts of Asteracantha longifolia Nees. find use for different clinical indications, it is important to establish quality of the plant raw material for its constituent plant part composition. This website uses cookies. By continuing to use this website you are giving consent to cookies being used. For information on cookies and how you can disable them visit our Privacy and Cookie Policy.

AGREE & PROCEED